9 research outputs found

    A collocation method based on the Bernoulli operational matrix for solving highorder linear complex differential equations in a rectangular domain,”

    Get PDF
    This paper contributes a new matrix method for the solution of high-order linear complex differential equations with variable coefficients in rectangular domains under the considered initial conditions. On the basis of the presented approach, the matrix forms of the Bernoulli polynomials and their derivatives are constructed, and then by substituting the collocation points into the matrix forms, the fundamental matrix equation is formed. This matrix equation corresponds to a system of linear algebraic equations. By solving this system, the unknown Bernoulli coefficients are determined and thus the approximate solutions are obtained. Also, an error analysis based on the use of the Bernoulli polynomials is provided under several mild conditions. To illustrate the efficiency of our method, some numerical examples are given

    A Sparse-Sparse Iteration for Computing a Sparse Incomplete Factorization of the Inverse of an SPD Matrix

    Full text link
    In this paper, a method via sparse-sparse iteration for computing a sparse incomplete factorization of the inverse of a symmetric positive definite matrix is proposed. The resulting factorized sparse approximate inverse is used as a preconditioner for solving symmetric positive definite linear systems of equations by using the preconditioned conjugate gradient algorithm. Some numerical experiments on test matrices from the Harwell-Boeing collection for comparing the numerical performance of the presented method with one available well-known algorithm are also given.Comment: 15 pages, 1 figur

    Numerical solution of time-dependent diffusion equations with nonlocal boundary conditions via a fast matrix approach

    Get PDF
    This article contributes a matrix approach by using Taylor approximation to obtain the numerical solution of one-dimensional time-dependent parabolic partial differential equations (PDEs) subject to nonlocal boundary integral conditions. We first impose the initial and boundary conditions to the main problems and then reach to the associated integro-PDEs. By using operational matrices and also the completeness of the monomials basis, the obtained integro-PDEs will be reduced to the generalized Sylvester equations. For solving these algebraic systems, we apply a famous technique in Krylov subspace iterative methods. A numerical example is considered to show the efficiency of the proposed idea

    Fourier operational matrices of differentiation and transmission: introduction and applications

    Get PDF
    This paper introduces Fourier operational matrices of differentiation and transmission for solving high-order linear differential and difference equations with constant coefficients. Moreover, we extend our methods for generalized Pantograph equations with variable coefficients by using Legendre Gauss collocation nodes. In the case of numerical solution of Pantograph equation, an error problem is constructed by means of the residual function and this error problem is solved by using the mentioned collocation scheme. When the exact solution of the problem is not known, the absolute errors can be computed approximately by the numerical solution of the error problem. The reliability and efficiency of the presented approaches are demonstrated by several numerical examples, and also the results are compared with different methods
    corecore